1 (a)	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \\ & 7 \\ & 8 \end{aligned}$	cell wall ; plasmid; flagella; capsule ; loop of DNA / circular chromosome / no chromosome(s); no nucleus; no, organelles / named organelle ; AVP ; e.g. smaller ribosomes	[max 2]	R size A fimbriae / pili ignore 'thread of DNA' unqualified some of these structures are not in all bacteria, but are often shown in diagrams of bacteria
(b) (i)		xponential / log;	[2]	please look carefully at spelling of lag and log

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \& \multicolumn{3}{|l|}{Answer} \& Marks \& Guidance for Examiners \& \\
\hline 1 (ii) \& 1
2

3
4
5
6
7 \& ```
D - 'birth' = death ;
E - death > 'birth' ;
for either \boldsymbol{D} or \boldsymbol{E}
less / no, food / nutrients;
less / no, oxygen ;
accumulation of, wastes / toxins ;
limiting factor(s) used in appropriate context ;
carrying capacity / described ;

``` & & [max 3] & \begin{tabular}{l}
A rate of growth / reproduction for birth \\
A limit / limits in context
\end{tabular} & \\
\hline (c) (i) & \multicolumn{3}{|l|}{jointed, legs / limbs / appendages ; exoskeleton ;} & [max 1] & & \\
\hline \multirow[t]{2}{*}{(ii)} & \multicolumn{3}{|l|}{either} & & & \\
\hline & \begin{tabular}{l}
1 \\
2 \\
3 \\
4 \\
\\
\hline
\end{tabular} & \begin{tabular}{l}
idea that bottom of sea, predators / prey, unable to see ; camouflage not needed (ref to, avoiding predators / (therefore) no need to make pigment ; less energy needed (to make pigment) ; \\
mutation / change in gene or DNA ; so no pigment made (allow only if MP5 is given) ; white crabs / albino crabs, survive and reproduce ; pass on their, gene(s) / allele(s) (for no pigment) ; ref to (natural) selection in context ; R if artificial
\end{tabular} & 1
2

3
4

5
6
7
8
9 & \multicolumn{2}{|l|}{\begin{tabular}{l}
bottom of the sea is covered in white, sand / rock ; dark coloured crabs, are conspicuous / easily seen, by predators / more likely to be predated ; no need to make pigment ; less energy needed (to make pigment) ; \\
mutation / change in gene / DNA ; so no pigment made (allow only if MP5 is given) ; white crabs / albino crabs, survive and reproduce ; pass on their, gene(s) / allele(s) (for no pigment) ; ref to (natural) selection in context ; \(\mathbf{R}\) if artificial
\end{tabular}} & [max 4] \\
\hline
\end{tabular}
\begin{tabular}{|lll|l|l|l|}
\hline Question & & E \(\quad\) answers & Mark & Additional Guidance
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Question & E answers & Mark & Additional Guidance \\
\hline \begin{tabular}{l}
2 \\
(iii) 1
\end{tabular} & \begin{tabular}{l}
lag phase / numbers increase slowly / low rate of growth ; \\
ignore 'numbers stay the same' \\
(while) bacteria, make proteins / increase in size ; log phase / exponential phase / numbers increase quickly ; \\
A rapid rate of growth / bacteria divide faster than die plenty of, food / nutrients / oxygen ; ignore raw materials stationary phase / numbers stay constant ; \\
A 'birth' rate = death rate \\
death phase / increase in death rate / decrease in numbers / bacteria be (because of) lack of, food/nutrients/oxygen or decrease in \(\mathrm{pH} /\) accumu ref to limiting factors; \\
AVP ; e.g. Lactobacillus bulgaricus increases first
\end{tabular} & [max 5] & \begin{tabular}{l}
accept (cell) division / (binary) fission / reproduction for growth for MP1 and MP3 \\
MP4 A 'availability of food / AW'
\end{tabular} \\
\hline \begin{tabular}{l}
(iv) 1 \\
2 \\
3 \\
4 \\
5 \\
6
7
\end{tabular} & \begin{tabular}{l}
need different bacteria to, carry out different processes / produce idea that each bacterium needs something produced by the other ; \\
Streptococcus (thermophilus) does not make lactic acid ; Lactobacillus (bulgaricus) needs formic acid produced by \\
each stage requires a different (specific) enzyme ; \\
A enzymes work on different substrates idea that each bacterium cannot make all the enzymes needed ; AVP ;
\end{tabular} & [max 2] & \begin{tabular}{l}
A both needed to make lactic acid A 'work differently' \\
If MP4 awarded then also award MP2 \\
A S. thermophilus \\
A L. bulgaricus
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline Question & E answers & Mark & \multicolumn{2}{|l|}{Additional Guidance} \\
\hline 2 (b) & ```
preservative / acidity regulator / pH regulator ;
antioxidant;
colouring / food dye ;
flavouring;
emulsifier ;
sweetener;
thickener;
stabiliser;
``` & [max 3] & \begin{tabular}{l}
ignore \\
names and/or (E) numbers of additives e.g. MSG, tartrazin sunset yellow, etc.
\end{tabular} & \begin{tabular}{l}
Reject \\
fruit \\
chocolate \\
nutrients \\
any named \\
nutrient, e.g. \\
food starch / \\
corn starch \\
(named) \\
vitamin(s) \\
(named) \\
mineral(s) \\
salt \\
calcium \\
supplement
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline 3 (a) & ```
pinna / external ear ;
fur ;
mammary glands / secretes milk ;
sweat glands;
endothermic / homoeothermic / AW ; A - warm blooded
different types of teeth;
3 middle ear bones;
``` & [max 3] \\
\hline (b) & \begin{tabular}{l}
MP1 redirects blood away from skin to (internal / vital) organs ; \\
MP2 vasoconstriction; \\
MP3 fat under the skin ; \\
MP4 fur / hair ; \\
MP5 traps air ; \\
MP6 fat / air, poor conductors of heat / insulators ; \\
MP7 reduces heat loss; \\
MP8 by, conduction / convection ; \\
MP9 generate heat, by metabolism / shivering ; A - endothermic \\
MP10 small surface area to volume ratio / large size ;
\end{tabular} & [max 5] \\
\hline (c) & \begin{tabular}{l}
group of organisms of one species ; \\
live in the same place, at the same time / together ;
\end{tabular} & [2] \\
\hline (d) & different species have different, genes / DNA ; & [1] \\
\hline (e) & \begin{tabular}{l}
any two suitable suggestions, e.g. \\
maintaining, genetic diversity ; \\
important in food web ; \\
possible medical application / useful genes ;
\end{tabular} & [max 2] \\
\hline & & [Total: 13] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Question & & \multicolumn{3}{|l|}{E Answers} & Marks & Additional Guidance \\
\hline 4 (a) & & \multicolumn{3}{|l|}{jointed / articulated, legs ; exoskeleton / described ;} & [max 2] & \begin{tabular}{l}
\(\mathbf{R}\) antennae / wings \\
\(R\) many legs \\
R segmentation body
\end{tabular} \\
\hline \multicolumn{2}{|l|}{(b)} & \[
\begin{aligned}
& 6 / 7 \text { RIGHT }=4 \\
& 5 \text { RIGHT }=3 \\
& 3 / 4 \text { RIGHT }=2 \\
& 1 / 2 \text { RIGHT }=1 \\
& 0 \text { RIGHT }=0
\end{aligned}
\] & \begin{tabular}{c} 
go to 2 \\
go to 7 \\
\hline Schistocerca gregaria \\
\hline go to 3 \\
\hline go to 4 \\
\hline Drosophila melanogaster \\
\hline go to 5 \\
\hline go to 6 \\
\hline Ephestia cautella \\
\hline Batrachedra amydraula \\
\hline Rhynchophorus ferrugineus \\
\hline Oryctes agamemnon \\
\hline Microcerotermes diversus \\
\hline Oligonychus afrasiaticus \\
\hline
\end{tabular} & \begin{tabular}{c} 
A \\
\hline \\
\hline B \\
\hline \\
\hline G \\
\hline E \\
\hline F \\
\hline D \\
\hline C \\
\hline H \\
\hline
\end{tabular} & [4] & \\
\hline (c) & \[
\begin{aligned}
& 1 \\
& 2 \\
& 3 \\
& 4 \\
& 5 \\
& 6 \\
& 7
\end{aligned}
\] & kills, harmless / ref to, predators idea that pestici any effect on an any further detail pollutes / poison AVP; & \begin{tabular}{l}
/ non-pest, insects / animals / fi sites, of pests ; \\
e concentrated in food chains ; higher up food chain ; e.g. extin kills birds of prey / egg shell thi ams / rivers / lakes / sea ;
\end{tabular} & & [max 4] & MP5 A any consequence for food hain/web/ecosystem \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline (d) & as a control ; & [1] & A idea that it is used as a reference to see the effect of the pesticide \\
\hline \begin{tabular}{l}
(e) (i) \\
1
2
3 \\
4
5
6
7 \\
8
\end{tabular} & \begin{tabular}{l}
pesticide \\
numbers decreased, immediately (after spraying) / on day 4 ; \\
then increased ; \\
use of figures - reference to day and density ; \\
fungal spores \\
numbers did not decrease immediately / decreased after day 7 ; \\
decreased, slowly ; \\
did not increase ; \\
use of figures - reference to day and density ; \\
any comparison to the control ;
\end{tabular} & [max 5] & \\
\hline (ii)
\[
\begin{aligned}
& 1 \\
& 2 \\
& 3 \\
& 4 \\
& 4 \\
& 5 \\
& 6 \\
& 7 \\
& \\
& \hline 8 \\
& 9 \\
& 10 \\
& 11 \\
& 12 \\
& 13
\end{aligned}
\] & \begin{tabular}{l}
pesticide \\
kills nearly all grasshoppers / kills instantly ; \\
on contact / or immediately after ingesting it ; \\
some resistant / some tolerant / some not hit by spray / some not eaten \\
pesticide / some survive ; \\
pesticide decays / removed / not effective for long ; \\
more grasshoppers migrate from neighbouring areas ; \\
more grasshoppers, hatching / AW ; \\
eggs not killed ; \\
fungal spores \\
did not kill on contact / did not kill immediately ; \\
spores need to, germinate / grow ; \\
takes several days (must be linked to MP9) ; \\
fungus (produces spores) that infect other grasshoppers ; ref to transmission of fungus ; \\
any grasshoppers that migrate into area are infected (and killed) ;
\end{tabular} & [max 4] & \\
\hline \multicolumn{4}{|c|}{[Total: 20]} \\
\hline
\end{tabular}```

